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SUMMARY

OBJECTIVE

This report is part of an ongoing effort to establish a rigorous, comprehensive tactical
theory of command, control, and communications (C 3 ) processes.

RESULTS

A formal theory of C3 processes is presented in conjunction with the evaluation
through algebraic logic considerations. These take into account linguistic and other nonsto-
chastic information as well as ordinary probabilistic ones. The theory involves a number of C3

variables and their relations such as node descriptions, equations of motions, input-output
signals, weapon firings, etc. As a result of the lormal theory, recursive forms are developed for
the evolution of typical node states as explicit functions of C 3 variables and their relations. In
turn, a game theoretic structure of C 3 processes is also established where moves of the game
represent the allowable designs of C 3 relations.

In the probability logic case, a general result concerning uniform approximation by
linear-Gaussian mixt,,re of distribution is presented for improving implementations.

CONCI T'SION

A coherent theory of tactical C3 processes appears possible through this work. Future
efforts will address problems of implementation.

Ac;cesirm orNTiS , I;t.:

Di r -A itc,
............ .......L..............

............... "... _".'i:.. j

A,)! Li: dt-C

DistI

By-i
-l , 2 , i, -



CONTENTS

I. IN T R O D U C T IO N ................................................................ 1

2. SCOPE OF THE PRESENT WORK ............................................. 3

3. TH E C 3  D ECISIO N G A M E ...................................................... 4

4. FORMAL. THEORY AND EVALUATION FOR
A TYPICA L C 3  NO D E STATE .................................................. II

5. UTILIZA I ION OF LINEAR-GAUSSIAN MIXTURE APPROXIMATIONS ... 19

6. C O N C L U S IO N S .................................................................. 29

7. R E F E R E N C E S .................................................................. 30

FIGURES

I. Simplified external dynamics of C3  processes ...................................... 5
2. Simplified internal dynamics of C 3  processes ....................................... 6
3. Basic evolution cycle of a node due to "signal" processing and response ............ 6
4. Knowledge flow in describing situations .......... ................................. 8
5. Schem atic for C3  decision gam e F ................................................. 10
6. Functional development of C 3 decision game F .................................... 10
7. Computation requiremenms for high-level processing of a typical

node input-output processing cycle ................................................. 18

TABLES

I. Components of C 3 node states ................................................. 7
2. Formal language description of , C 3 node evolution ............................... 11
3. Interpretations of the formal language for C 3 node evolution ...................... 13
4. Categorization of events occurring during inner-outer air battle ................... 30

iii



1. INTRODUCTION

For the past 10 years, command, control, and communications (C3), as an organized
discipline, has evolved grea:!y from the fledging concepts of J. Lawson, M. Athans, and others
as presented in the Proceedings of the First MITi ESL-ONR Workshop on Distributed
Communication and Decision Problems, (Athans, 1978) to the more sophisticated views
presented in the succeeding Proceedings of the Command and Control Research Symposium
sponsored by the Joint Directorate of Laboratories (1988).

In addition to the seminal work presented in the proceedings during the 8 years of
the MIT ONR workshop on C 3 systems and in the proceedings of the past 2 years of the
Command and Control Research Symposium, otner sources for unclassified, unlimited analysis
of general C 3 systems include:

1. JDL. TPC 3. BRG, C3 Handbook (Draft). San Diego. CA: NOSC and NPRDC,
1988.

2. Institute of F!ectrical Engineers (IEE), Computing, Control, and Electronics
Division, Proceedings of the First and Second International Conferences on
Command. Control, Communications and Management Information Systems.
Great Britain, 1987, 1988.

3. Institute of' Electrical and Electronics Engineers (IEEE), Special Issue on Infor-
mation Technology for Command and Control, IEEE Trans.Svs.Man. Cybcrn.,
Vol SMC-16(6). Nov - Dec 1986.

4. Armed Forces Communications and Electronics Association (AFCEA), Science
of Command and Control: Coping with Uncertainty, Fairfax, VA.: AFCEA
International Press, 1988.

5. R. Sweet. M. Metersky, and M. Sovereign. eds.. Command and Control Evalua-
tion Workshop (Proceedings). Based on Military Operations Research Society
(MORS) MOE Workshop, Jan 1985, Naval Postgraduate School, MORS and
MITRE Corp., Nov 1985.

6. C. Strack. Elements of C 2 Theory, McLean, VA.: Defense Systems Inc. (DSI),
draft version. 15 Oct 1985, abridged version, 30 Jan 1985.

7. Office of the Secretary of Defense and MITRE Corp., C 3 Division, Proceedings
for Quantitative Assessment of Utility of Command and Control Systems,
proceedings of conference held at National Defense University (NDU), Ft.
McNair, Washington, DC, Oct 1979, McLean, VA.: MITRE Corp., Jan 1980.

For an overview of the more important papers from the MIT, ONR workshop on C 3

up to 1985, see Goodman (1985). More recently, Van Trees (1988) has presented an excellent
critical analysis of the state-of-the-art in C 3 work. Based on these studies of C 3 systems, we can
conclude that past and current work in this area can be divided roughly into the following
taxonormv:

I. C.1 systems on long-range strategies, global and political ramifications, and high-
level planning.

2. Tactical or midievel (3 systems. emphasizing the actual dynamics of C 3 events
during t pical engagements. Note: throughout this report. little or no distinction



is made between the use of the terms "systems" and "processes," nor between
"measures of effectiveness" (MOEs) and "measures of performance" (MOPs).
However, for a different viewpoift, see Metersky (1985).

a. Qualitative studies. emphasizing the use of graphs, flowcharts, and verbal
descriptions.

b. Quantitative studies, emphasizing numerical measures or algebraic relations,
usually centered about the stochastic state space approach.

(I) Aspect-oriented quantitative work, where one, or possibly more,
particular facets of tactical C 3 processes are considered. Typical exam-
ples of this are surveillince and tracking, correlation, tactics for a
particular class of scenarios, deployment for air-to-ground conflicts,
determination of MOEs for C 3 systems, resource allocation of troops
or weapons studies. communications analysis, C 3 decision aids, aspects
of distributive decision-making, and game theory applied to restricted
situatioiks.

(2) General-structured C3 analysis, where an attempt is made toward
developing a general view of C 3 processes as a whole entity.

3. Technological hardware! software considerations. datahase management, com-
puter design, field exercise studies, teaching and training of C 3 concepts.

Suffice it to say, the vast majority of endeavor in C3 analysis has been directed to
subparagraphs 2a, 2b(l), and 3, with little attention paid to I (understandable relative to the
open literature format) and 2b(2). Certainly, qualitative studies are still useful due not only to
the inherently great complexity of C 3 systems, but also since heuristic analysis must always
precede any quantitative analysis. Furthermore, quantitative aspect-oriented work is also of
prime importance, since the various parts of the whole C 3 picture are in themselves challenging

and complex problems. Understanding the bits and pieces of C 3 can only contribute to the
entire view. Nevrtheless, we contend that more effort must be made to discern the general
pattern of C 3 dynamics if C 3 work is to gain the stature of other scientific disciplines.

For some attempts at considering C3 tactical processes as a whole entity, see e.g., the
indepei.dent works of Ingber (1986) and Rubin and Mayk (1985), as well as followup papers
by these authors in the proceedings of the MIT!ONR workshop on C3 systems and later
proceedings. lngber's approach to the problem is a mesoscopic-macroscopic one, considering
C3 systems analogous to systems of interacting molecules or neurons, suitably modified and
analyzable fror. a statistical mechanics viewpoint. On the other hand, Rubin ar.d Mayk's
approach is more microscopic in nature, also utilizing a purely stochastic technique, originally
centering about numerical supply and attrition levels, generalizing the well-known Lanchester
equations for mutual growth and decay of interacting populations. Although the thrust of their
work has greatly expanded, modelig of the internal behavior of C3 node complexes of
decision-makers is not explicitly taken into account, as Levis (1983) and Tomovic and Levis
(1984) have done. In the latter, the behavior of individual decision-makers and their constraints
and interactions with others are modeled from an organizational viewpoint, using in one key
part Conant's decomposition of entropy, as well as other criteria. (See also the subsequent
papers by I evis and his students at the Laboratory for Information and Decision Systems
(IIDS), MIT in these proceedings and those of the MIT ONR workshop on C 3 systems.)
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With modest changes. we can attempt to model the entire tactical C 3 process, using

individual node structures and states as the basic building blocks, without necessarily making
stochastic assumptions. This author has proposed such an approach, (Goodman, 1986a) with a
followup paper (Goodman. 1987) elaborating upon the use of nonprobabilistic models in C 3

analysis. Much of this was based on previous work concrning the modeling and combining
of uncertainties arriving from possibly disparate sources, stochastic or linguistic (Goodman and
Nguyen. 1985). [See also Goodman, (1986b) for a practical implementation of such an
approach for tracking and correlation of data.]

2. SCOPE OF THE PRESENT WORK

The current task is an improvement and enlargement of the pre,ious efforts in estab-

lishing an overall model for C 3 dynamics (Goodman, 1986a. 1987). The basic goal of this
report is twofold:

I. 1 o showA that tactical C 3 processes can be modeled within a game theory setting.
using a formal system of axioms. capturing a minimally required number of rela-
tions among C 3 variables and operators.

2. To provide an outline for a feasible implementation of this program as an aid in

designing and predicting global behavior of C 3 systems.

In modeling the C 3 processes, we must tradeoff the fidelity of a theory with the
complexity of resulting computations required for implementation. The thesis here is that we
should first attempt to model C 3 processes as a whoie, despite its complexities, then seek
reasonable reductions of computations.

In section 3, the h4, c C 3 model is developed as a decision game. This requires five
steps:

I. Select a set of axioms involving relevant C 3 variables and operators so that a
formal description of dynamically evolving node states can be oltained.

2. Select an algebraic logic description pair to numerically evaluate the formal

*C -. kPIAvpU, i, 3o.t  I.

3. Spccify an averaging procedure that can appiv to all C3 nooe state evaluations in
step 2.

4. Use outputs of step 3 to determine the overall "state of health" (i.e.. tendency for
wxnningl of each C 3 system.

5. Vse figures of merit (FOM) in step 4 to define the overall loss function, and

hence. C-3 decision game.

As in previous work. (-3 processes here are viewe,:d as interacting networks of node
c,,mplcxcs of decision-makers. Relcant C' variables are first identified, including nodal ones
such as equations of motion, attrition level, detection state, algorithm selection, and hypotheses
caluations. Other (,3 variables treated are reception of signals or incoming exploding weap-
ons. and the responses following data processing. In addition, logical operators, such as
conlunction, disjunction. negation, and conditioning operators among C3 variables are also
taken into a( count.

3



Jo implement step I, a collection of axioms is presented in section 4, formally repro-
ducing i;;c cs:;ntial relatiu,. among C-3 variables and operators. These axioms modify and
extend analogous axioms presented by Goodman (1986a). These axioms reflect the typical time
cycle of a node, somew hat simplified. They begin with the reception of arriving "signals" (i.e.,
intormation, %eapons. any other incoming entities which can prowoke change in the node state)
followAed by information processing and related activity. These axioms end with the time of
output response by the node to other nodes. friendly or adversary. With the formal language
established through the axioms and using the standard rules of deduction, a basic theorem is
derixed. J heorem 4.1 gi es a formal description of the dynamic evolution of a typical node
state \cctor at the end of the input-output cycle as a functional of the same node state at the
beginning of thr cycle just prior to the reception of the "signal" and of all other pertinent
(,3 variables. J hi., immediately leads to a recursive form for each node state's evolution, begin-
ning with the original intitiali/ation of the C3 system.

In step 2, an algebraic logic description pair (ALDP) is chosen, compatible with the
abo\e formal descriptions, in order to obtain the full quantitative evaluation. Typically. proba-
bility logic can play this role, but in order to utilize linguistic-based and other types of informa-
tion, other logics can bc used just as well, such as Zadeh's fuzzy logic or Dempster-Shafer's
belief logic. A scheme is presented for using these logics in a nboptimal or marginal sense as
inputs to "t\so-person" (actually friendly versus adversary C 3 processes) decision game. For
more details on steps 3 to 5. see the concluding part of section 3.

B., choosing probability logic for implementation, a fundamental result (corollary 5.2)
can be invoked that is of potentially good use in evaluating the overall dynamic evolution of
C 3 node states. Section 5 presents the details of this logic where essentially, a uniform close
approximation by finite linear-Gaussian mixtures of distributions can be used to represent
distributions of C3 variables and in turn, the evolving node states.

Finally, section 6 presents a brief discussion for application of the model, in general.
and to a simplified inner-outer air battle scenario, in particular.

3. THE C3 DECISION GAME

In all that follows, for simplicity, we will consider only two C 3 proce,,es. one friendly
and one adversary.

1h:- are three types of variables describing a C3 process:

M, node complex variables, representing the decision-makers, human or automated.
and their immediate environment.

rc',de input "signal" variables. where. as explained before, "signal" need not refer to
lust an ordinary array of incoming information, but may. as well, dtiwt,. incoming z:d
"eapons or other disturbances to the initial node complex,

R, node output responses immediately foilowing the complete "signal" processing.

Symbolically, one can represent the temporal relation among MS.R. as

.M R -S- M- R -S- M - R-S ,.. ,(3.1)

regardless of the particular nodes interacting with other nodes and the multiplicity of "signals"
and responses. In general, an arriving "signal" originates. nossiblv from several, nodes M as
initial responses R, but due to intermediate media distortion and change, becomes S. See
figure I for an example of a C3 process, showing how one can scope out the roles of "signals",
responses, and nodes.
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Tt: Ihi.: c a %.e n ikd are essntillss -explatoir. such as: 1)\V n - t number of t Npe 2
ssili1 ruarl.I Q 1() ekciiatiurlns) if litiin (of entire nlode): INVO Jnosmledge or esti-
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Table I Components of C 3 node states.

r Thie:,t Level
Node Node State] # of Troops

4 of WP, I
# of WP, II

IImportance
State Proper Supply level

Eq. of Mo.
l)amage Level

Vector Knowledge Estimates of1
Part Other Node

States J
NOD)L (NODE STATE. NODE SI Rt'CTIURE)

decomposable into appropriate ubvariables, when required, such as in correlation of data in
multitarget tracking: and DEC = decision variables representing actual decisions to be made
based upon arri ing "signals".

Consider now the basic C3 structure indicated in equations (3. 1) through (3.4), as well

as time-shift markers ( ) , ( )+, ( )o, and conditioning operator (i). Also, note logical connectors
& (conjunction and intersection), v (disjunction or union), ( )' (negation not complement)
and set event relations DOM (domain of possible values of the associated variable), ( (set
niembersnip relation). fl (universal set of discourse) and 0 (null or empty set). Clearly. any
qualitative or quantitative description of a C 3 process as a whole entity must entail descriptions
of the nodes constituting the process using, in some sense, the above concepts.

With all of the above C3 variables and operations notel and interpreted, the funda-
meptal steps in establishing an overall model of tactical C 3 processes can now be attempted:

I) Obtain a formal theory for the dynamic evolution of a typical node state N using

an appropriate set (1i lxiom, AX involving C 3 variables and operators. In this case. N can bf,
expressed as some func io ial of C 3 v ,riables and operators symbolically described as

N - 7(AX) . (3.5)

Details of these relations are given in table 2, in section 4.

(2) Evaluate quantify typical C3 node states as given in eq. (3.5) by choice of some
algebraic logic description pair (Al D P). Such a pair consists of a syntax space with algebraic
structure and a compatible semantic evaluation logic function with range in the positive real
line Examples include:

("l,(classical logic) : (Boolean algebra, 0-1 truth function) ... 6)

P11 probabilit, logic) = (Boolean algebra, probability measure) (3.7)

H[,(Zadch's fili y logic) z (Browkcrian lattice. possibility function) . (3.X)

)SBI .( )empster-Shafer belief logic) :( Boolean algebra.. belie) function) . (3.9)

[See (oodman ( 1987) and (hoedman & Nguyen ( 1985) for further details.]
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Indeed, one can view the ALDP evaluation as the final part of knowledge flow in
describing not only C 3 processes, but also of situations in general, beginning with cognition.
(See figure 4 for a brief outline of this.)

Qualitative Phase

Problem Situation Natural Language
(C3 Processes) - Cognition Formulation

Quantitative Phase

Algebraic Logic Full ' Semiotics/
Description Pair: 4 Formal Language/ 4 Strings of Symbols,

(Syntax, Semantics) Formal Theory Dictionaries

Figure 4. Knowledge flow in describing situations.

Denote the numerical evaluation of each formal node state description symbolically as

PALDP(N-C3) - Ij(N.C 3)1I ALDP, (3.10)

where PALDP or I III ALDP indicates the logic function associated with the chosen ALDP.
Thus, for pl, PAIDP means a probability measure (or function, etc), or if one chooses ALDP
FL, PFL = poss, a possibility function, etc. For an ALDP, in general, call PALDP a dispersion,

unless otherwise specified.

Using eq. (3.5) in eq. (3.10) and applying the compatibility property of ALDPs yields
the relation

PAI.Dp(NC 3 ) -- 6AI..DPAX[PALDp(AXC 3 )], (3.11)

where N is a given node state of a C3 process, denoted simply as C3 , 6 ALDPAX is a functional
and PAI.DP( (X,C 3 ). extending somewhat the notation in eq. (3.10), is the collection of all
dispersions in evaluating the RHS (right-hand side) of eq. (3.10) for a given C3 process
(fricndly or adversary) and choice of ALDP. Note that in a real-world situation, for given AX
and ALDP, the set of dispersions PA! Dp(AX,C 3) is highly dependent in form upon just what
C 3 is, or equivalently, any allowable collection of dispersions represe:nted by PALDp(AXC 3 )

completely determines C3 and thus, may be identified with any of its primitive set of disper-
sions determining all of C'.

In the approach in steps ( I) and (2), each C 3 node is considered separately or margin-
all% taking into account, however, all of the nodes that interact with it as well as all relevant
' variables, friendly or adversary. This is assumed at the outset in order to obtain a simpler

model than if all possible joint interactions at a given time were taken into account, analogous
to the suboptimal determination of individual marginal distributions of a more (exponentially)
complex joint distribution from which the marginals arise.

(3) In turn, combine the results of step (2) - individual updated marginal node state
descriptions back into a simple global description of the C3 process at hand. As mentioned
above, this is done considering the very real tradeoff of model fidelity versus complexity of

8



calculations, in place of attempting to carry out the optimal full joint descripton of C3 behav-
ior. A reasonable combination operator AV here can be simple arithmetic, or more generally, a
weighted sum. averaging the corresponding node state entry dispersions, representing thus an
updated overall C 3 process behavior. If arithmetic averaging is not desired, other suitable
measures of central tendency can be used, such as modes or medians. among others. The basic
output at this stage can be symbolized as

PALDP(C 3 ) - AV(PALI)p(N,C 3 ). all N 6 C 3 ), (3.12)

where C 3 represents the particular C 3 process of interest.

(4) Next, determine a functional 1"AI.D I, which directly relates the updated averaged
dispersions of a given C3 process with a single or multiple attribute vector describing the over-
all "health" state ot C 3 :

HI.THAI DP( C 3 ) -: Y/AIIp[([3A I.Dp(C3)] . (3.13)

For example, -AIDP could be a certain weighted mean, or perhaps involve set thresholds,
of a number of MOEs and or MOPs of the C3 process as a whole. each of which, in turn,
depends upon PALDP(C 3 ). Examples of such MOEs and MOPs can include overall supply
attrition level, overall entropy level, various system performance criteria, including timeliness,
damage levels, kills, destruction of enemy level, etc. For a good systematic exposition on
MOEs and MOPs atid related measures, see Sweet (1987) or Rubin and Mayk's discussion
(1987 pp. 15-16).

Using eqs. (3.11) and (3.12) in (3.13) yields

HFLTHA.P(C 3 ) 5 ALDP[PAI.Dp(AX,C3)j, (3.14)

for some functional ) depending in part on 6, ?¢.

(5) Finally, one can establish the desired two-person zero sum decision game F as
shown schematically in figure 5:

The loss function in figure 5 resulting from the moves of each player can be expressed as

[.Oss =Aj[p[H LTHAt I)P(C3r), HLTHAIDp(c~d)]

-KA I)PIPAIDp(AXC ,I)p(AXCd) (3.15)

where A is determined by equations (3.11) through (3.14).

Thus, one can inquire whether I' has a game value, what the Bayes strategies are for
e;, side, what the least favorable move or strategy is for the adversary versus the friendly side.
what the friendly side's minimax strategy is, and what the class of admissible strategies is for
each side. etc. All answers must depend upon the allowable classes of choices for the primitive
relations pAII)p(AX.C3).

Such a game can be of value in the design and study of sensitivity of outcomes for
(.3 processes, provided these questions can be addressed using feasible computations. This of
course, depends on whether eq. (3.5) and hence eq. (3.11) can be effectivelv limited in
complexity.
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Deciion-akerNature = Adversary 33 Process

Decision-maker ==C3

Friendly C3 Process Ad

=C 3  Typical Move: Choice of

Typical Move: PALDP(AX3Ad)

Choice of

PALDP(AX , CFr) -- Loss

Loss is determined through a functional YALDP" See equation (3.15) below.

Figure 5. Schematic for C3 decision game F.

A summary of steps (1) through (5) is given below in figure 6:

In the next section, a key part of the development of r is given as the choice of axioms
AX and the resulting formal structure for node state evaluation as in step (1).

Move by C Pd = pALDP(AXCAd
)

(N 3 C3
PALDp(N,(3Ad) , N C 3d

C3 Variables, Ad

Logical Oper.,
Conditional Oper. PALDP(CAd)

ChooseAX ,,
SLTHA

LALDP AC?)

N=Y(AX)/ 0o9

Choose ALDP 0."HTH~P(3r *(

0 a

pALp(C Fr<

PALDP(N F N I Fr

Move by C3, = PALDp(AXCr) I

Figure 6. Functional development of C3 decision game F.
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4. FORMAL THEORY AND EVALUATION FOR THE EVOLUTION
OF A TYPICAL C3 NODE STATE

In the past, a number of attempts have been made to develop formal theories for
various scientifc and social disciplines which traditionally had not been analyzed from such
viewpoints. See, e.g., Woodger (1987) for biological systems and Carnap (1958), for other
applications including legal and social considerations. In this report, a simplified list of axioms
in non-quantifier propositional form is proposed, characterizing the essential features required
to evaluate dynamically evolving C 3 node states. In turn, as oulined in section 3. these axioms
can be of use in developing a C3 decision game. These axioms are of three kinds: logical
connections, properties of conditioning, and reduction of relations among C 3 variables, or
sufficiency conditions. The axiom collection AX is summarized in table 2 as follows:

Table 2. Formal language description of a C3 node evolution.

Equality Symbol:

Constants: fl, 0
Dummy Variables: a, ., -y

Specific Variables: N. R. S, T

N and T can be partitioned into subvectors, e.g.,

N = (#WPI, #WP 2 , #WP 3, #TROOP, EQMO. INFO)

T = (DET, ALG, HYP, I-US, CONS, DEC)

Operators: ( )+, ( )-, ( )0, (1). &, v, DOM, E

General Axioms: For all a, /3, -, and for &.v:

Ring structure for &.v

a*j/3 =/3,*a, */ 3 ") (a~f3)*y.

a&0=0, a&f1=a=av0, avfl=fl,

a&(C6vy) = (a&/)v(a&y).

General Axioms: For all , /3, -y and for * = &,v:

Implicative Conditional structure for &,v:

(aIlf)=, (aI/3):(a&/313),

(a& 1y) (alWy)&31y).

af DOM(a)

Sufficiency Axioms: For ,N (N&N &N==&..&No):

(N"I R-&T'&N+&S&R & )=(N"IR +- & N-),
(R+'--+&N+&S&R & )2(R"IDEC+ & N+)

(VIN' &S& R &,) (T IN')

(NTIS& R &N) (N IS & N).

(SIR &N)=(SIR ),

(R I ( (R IN)

II



The ring structure axioms are the minimum needed to characterize conjunction and disjunc-
tion. (Note that no inverses are postulated.) The axioms for conditioning, while reflecting well-
known properties, such as for probability interpretations, are new in that they refer to measure-

free conditioning (see discussion later in this section). The sufficiency axioms show the relation-
ships among the C 3 variables of interest, based on sequence of events as outlined in figures 2
and 3.

The axiom set in table 2 leads to a particular form of equation (3.5) describing recur-
six ely node state evolution:

Theorem 4. I.

Under the assumptions in table 2:

(i)

N+ V [(N" I R" &T-&N'&S&R & )&

(R++&T+&N+&S&R &f)]

R*+t[DOM(R ++ ) ,

T+EDOM(T ), SEDOM(S),

NtDOM(N+), R EDOM(R ),

NReDOM(O) (4.1)

V [(N *t R & N+)&(R+ IDEC+ & N+)&(T+I N+ )

&IN+IS& N)&(S( R )&(R IN)&NJL + +(D[OM(R++). T~tDOM(T[') ,NDO Nj

N+DOM(N ), ScDOM(S). R tDOM(R ),NDOM(N)

(ii) Regrouping terms above, compatible with table 2:

N ± V [(N++IN)& N], (4.2)
N( D)OM(N)

(N++I N) V [(N++ I R++&N+)&{R IN+)&(N+ IN)] (4.3)L R++ DOM(R ) 1
N+ f)OM(N4 )

~here

(NIN) V [(N-IR &N)&(R IN)] ,  (4.4)
R f DOM(R )

12



(R*'IN+) V [(R'IDEC & N4 )&(T+IN+)], (4.5)
1 * DOM(T+)

(N*IR &N)= V [(N1S&N)&(SIR )]. (4.6)
S( DOM(S)

(T+IN )= (DEC+ ICONS+&FtIS+&HYP+&ALG+&DET+&N±)

&(CONS+ I FS&HYP+&AG &DET*&N )

&(FIJS+ I HYWP&ALG &DET+&N +)

&(HYP+IA1.G+&DET &N + )

&(ALGIDET+&N)&(DET+IN+) . (4.7)

Proof Details omitted, but straightforward application of the usual rules of substitution and
the axioms in table 2.

Table 3 presents interpretations of the formal language used in table 2 for presenting
the axioms and consequent structure of node state evolution in theorem 4. 1.

Table 3. Interpretations of the formal language for C3 node evolution.

N = Node state vector, T = Node structure

R = Response vector, S = "Signal" vector

= Positive time shift to new phase

= Negative time shift to old phase

= Initialization of state (time-wise)

(I) = Implication or conditioning

& = AND, v = OR, ( )' = NOT (explained earlier)

DOM = Domain of possible values

= Set membership relation as used before

= Null set

Q! = Universal set

Thus, using the interpretation in table 2, compatible with figure 3,

(R " I'l&N ) = response following processing, (4.8)

(N I R &N') = new node state due to its sending out response, (4.9)

(T* IN ) = processing data, (4.10)

(N" N) = full cycle of node change due to "signals" received, over all
possible processing, and responses, etc. (4.11)

13



Following the five-step procedure presented in section 3 for developing the overall
decision game, the next stage requires the numerical evaluation of N' given in theorem 4.1
through choice of a suitable ALDP.

Remark 4. I

Note thut one can readily verify that all Botlean algebras - and more generally, all
Browerian lattices -- to satisfy the axioms in table 2. Hence, all four examples of ALDPs given
in equations (3.6) through (3.9) can be used to evaluate theorem 4. 1. For background and
discussions in considering the most appropriate ALDP for a given situation, see Goodman and
Nguyen (1985, 1QX The,:. if Pl were chosen as the ALDP by assuming only stochastic rela-
tions should be used, then eq. (4.3) becomes

p(N+ N) f p(N+ IR++,N+), p(R+ IN+)p(N+IN)dR*+ON+ (4.12)Lover all]
R*eDOM(R++) ,

N+EDOM(N + )

yielding, in turn, the counterpart of (4.2)

p(N+)z f p(N++lN).p(N)dN. (4.13)
NEDOM(N)

Or. if FL were chosen as the ALDP, by assuming only fuzzy relations should be used,
then eq. (4.3) becomes

poss(N* IN) maxjmin[poss(N++ I R,N+),oss(R++ N+)poss(N+ I N)]) (4.14)

over all

R'+EDOM(R + ) ,

LN'EDOM(N
)

yielding, in turn, the counterpart of eq. (4.2)

poss(N+ ) = max~min[poss(N*+ I N),poss(N)]} . (4.15)
NcDOM(N)

One could also choose combinations of Pl. and FL or other ALDPs. Again, see Goodman
(1987).

Similarly. by applying. e.g., PL one can evaluate in turn

p(N +IN): p(N'[R ,N).p(R IN)dR (4.16)

R EDOM(R )

p(R"j's') =f p(R'*IDEC+,N ).P(T'IN')dT' (4.17)

-I-EDOM(T+)

14



p(N+lR ,N)- f p(N+4 S,N).p(SIR )dS (4.18)
SEDOM(S)

p(S IR )=p[W =S f(R ],(4,19)

when the nonlinear additive regression relation holds

S= f(R ) + W (4.20)

where W is a random vector representing additive medium error between responses and
"signals" and f is a known function representing medium distortion.

Thus, one can identify the probabilities in equations (4,12), (4.13), and (4.16) through

(4. i9) with Ppt. (AXC 3 ) as given in step (2), following equation (3.11). Hence, by specifying
ppi (AX,C 3) for each process, friendly or adversary, one can then proceed, at least in theory,
with the construction of the C3 decision game, as outlined in steps (3) through (5), section 3.
Similar remarks hold true for the use of FL or any other of the ALDPs.

In particular, for PL, it follows from theorem 4.1 that for each C3 process, PPL (AXC 3)

is determined by first specifying 12 relatively primitive relations. Thus, one can write:

p(N I R+,N ),
P(R DI DECE,N),

p(CONS+ I FUS ,HYP+,ALG+,DET ,N+),

p(FUS+ I HYP+ ,ALG+.DET+,N+),

p(HYP+ IALG4 ,DET + ,N +), ,PPL )A X C 3).

p(ALG I DET+,N+), P)XC)
p(DET+ IN+), /

p(N+ S.N).

p(SJ R -),

p(R IN),

p(No ) (4.21)

Of course. it is understood in eq. (4.21) that the relations (except for the last) must be

specified for each time cycle of node-processing input "signal" to output response.

In another direction, noting that many of the relations in table 2 and in subsequent
equations are in conditional form, it is of some interest to inquire whether this theory can treat
operations on conditional forms when the antecedents need not be identical, generalizing the
axiom in table 2

( *,[ y)= ( Y)*(l[Y)(4.22)

to the case

(a* $IlP) ( qV> /)*(/7) ,(4.23)

15



where now 77 and y need not be the same, and p is some computable function (another event
or set) of a,3, y,r7, for * = &,v. For example, one may wish to determine Q, and by choosing
PL, p(Q), -. some appropriate joint probability measure p, where

Q [(alb) & (cld)] v (elf) (4.24)

where

a a(x) = enemy will move up about x troops tomorrow; x = 0, 50, 100, 150.

b b(y) = it will y tomorrow; y = be clear, snow, rain.

c c(z) = enemy will use pass z to approach us; z = 1, Il, Ill, IV.

d = d(rs) = morale of enemy node 17 is at level r and number of their troops left is s
r = very low, low, medium, high, very high, s = 0, 100, 200, 300.

e -e(w) = enemy will w tomorrow: w = surrender, not surrender.

f f(q) = enemy overall damage level is q , q = 0. I, 2 .. , 10.

Of course, if the antecedents in eq. (4.24) were all the same, then no real problem
,ould arise, since it is readily justified that for any choice of ALDP - certainly for PL

- "hat

Q = [(aid) & (cid)] v(eld)

= 1[(a&c)ve]ld} , (4.25)

even though normally one does not talk about such measure-free ,ntities (up to now). Indeed,
since the goal is the evaluation of Q, for PL, choosing a probability measure p over all the rele-
vant events, one would usually evaluate Q as simply

p(Q) = p{[(aId) & (cId)] v (eld)]

" pff(a&c)ve]jd}

" pf[(a&c)ve] &d}ip(d) , (4.26)

etc.. assuming p(d)>0.

But the point of the above example given in eq. (4.24) is that the antecedents in the
conditional forms are not identical! What to do?

Contrary to popular belief (author's note: this author and his colleague Prof. H.T.
Nguyen, Mathematics Department New Mexico State University, Las Cruces, have undertaken
and extensive informal survey of the probability community - both applied and theoretical -
resulting in the following conclusions -- see Goodman (1988) and Goodman and Nguyen
( 1989): there is no systematic and mathematically sound procedure for computing p(Q) (or Q,
for that matter) in eq. (4.24) or, in fact, for any similar problem!

Indeed, there are "folk" remedies to this situation which reduce to either identifying
conditioning with material implication, forcing conditioning to be a closed operation over the
Boolean algebra of events, or identifying conditionat events as marginal to a universal joint
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event having a fixed antecedent common to these marginal ones. In either case, serious difficul-
ties arise, either mathematically or computationally. For a satisfactory solution to this problem,
see Goodman (1988) and Goodman & Nguyen (1989), where a sound and complete ALDP
(among other properties) is developed, compatible with and extending, classical PL, called
CPL (conditional probability logic).

One consequence of the calculus of operations in CPL is that the evaluation of Q in
eq. (4.24) becomes

Q = ( ]o), -(4.27)

resulting in thc valuc

p(Q) = p(a) p(f), (4.28)

where

a (a&b&c&d)v(c&f) (4.29)

/3 a v {[(a'&b)v(c'&d)v(b&d)]&f} (4.30)

differing considerably from the "folk" approaches.

Returning to the construction of the C3 decision game, again note that by utilizing the
evaluations as in equations (4.12). (4.13), and (4.16) through (4.19) for PL, or equations (4.14),
and (4.15). and analogous calculations for FL, etc., one can then recursively evaluate the
dispersion of N' in eq. (4.1). However, as gleaned from figure 7 below, regardless of the ALDP
chosen, even the basic scheme for evaluating a typical single node-processing cycle from input
to output without further decomposition of the C3 variables and subvariables, especially that
of T- and N', still requires on the order of q4 matrix vector addition or multiplication opera-
tions, when, for simplicity, the domains of possible values for NR,ST have the same cardinal-
ity q. Under the same assumptions, one must also store about 2 • q3 domain values in order to
accomplish all the computations.

The evaluation procedure can become extremely tedious due to the multiplicativc
forms of the terms used, compounded by lengthy iterative disjunction operations over the
domains of the variables. In the next section, a possible solution to this problem is offered for
the case of PL.

17



From Previous Node
Input Output
Processing Cycle:

N End Product of
Se nCurrent Input-
Store: n Values Output Processing

Cycle:

(N- j *2n WOs,

Store: nr Values ) Store: n Values

(N- IS & N)

Store: n2"s Values (N-"R-&N) !

(S R-) 2n2.-r -s WO's,

Stoe: .VStore: n2 .r Values
Store T r osValues n

Store: n5r Valuesr +(.) N I
t2n2s ( r WO's,

(R'*IT'&Store: n 2 Values

Store: n r Ct Valuess,,C-(DMS., t -

(T IN )14.17) (R- IN-) 3n2.r Os
(T'iN')...... ... n .tW-O~s, - - Storen 2 Vus

Store: n-t Values Store: n-r Values

Totals: #(Initial Stored Values) = n.(1 + r).(1 + t) + n 2 . (r + s) + r-s

#(WO's) = n2 .(2 + 5r + 2r.s) + 2n.r.t

() Counts as 1 Weighted Operation (WO)

( ()Counts as 2 Weighted Operations (WOs), etc.

nCard[DOM(N), r q Card[DOM(R)L s d Card[DOM(S)], t 9_ Card(DOM(T)

Fiqure 7. Computation requirements for high-level processing of a typical node
nput-outpu! processing cycle.
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5. UTILIZATION OF LINEAR-GAUSSIAN MIXTURE APPROXIMATIONS

A\s stated before, all modeling of C3 prcsein general, must take into account the
very real problem of accuracy of model Nersus complexity of calculations. On possible reason-
able solution to this difficulty, at least for the choice of' ALDP =Pl. involves the use of some
fundamental approximation and representation theorems. which are useful in their own right.

First, before considering a theorem based in part on material in Goodman and Bover
19"75). the follows Ing definitions and notational Conventions "ill he introduced:

Letting r be an\ positive Integer and R?' the real r-dimensional Euclidean space. with
[0. 1] being the real unit IntervNal, call any Cumulative probability distribution function (edO)
F:-R I--[0.l ] ciel-hchaveod iff In its Jordan-Lebesque decomnposition (see, e.g.. Feller. 1966.
pp. 135 140) no0 Singu11lar component appears. the discrete component distribution, if present is
at most ti nite. and the absolutely continuous component admits a probability densit\ function
pd f) hich Is bounded anrd u nilornfl\ continu-ous ON er 'RE' Thus.

F'2 (5.1)

Nk here 1 '-[0,.1]j corresponds to a finitelx\ discr ete probabilitN measure for.*= I and an
absolutcl\ continuous1' ptrobabilitr measure (or i=2. wAith pdf P 2' being bounded and uniformly,
continu.0,ou % O rR

(lcarlx . laric classes, o! common probability measures have cdf's satisfying these

I-or notational purpose,,. also let

I- V (5.2)

NOCs her ti ', a m1ass Poin to or F, i I is thle d rac delta (unction. p, represents the probabil-

It.% of occurrenCC crlaixe( to 1-( 1 at 10 .0 pp! = IJ~

J beinig (mniteor wexeri xactous, B3 couxentilor it ~J 6. 1-( 1 is, vacuous, and F reduces ito the
ptirel absoltlxl cMntHiuous Cdf I-'

I )eprid ig! onl the colteXt use~d, denote 12, to mieani eit her the pdf1., cdt, or probability,
(lis11trI t . ci rrespo rid in tio an r-d inmetisiorl ( Iadusian dist ribit ion x\ ithI mean 0 , and pos ,i-
tIC definite ci ixaiaII: nec rrrt \ 1.. \ext. t or Ml\ sequce1Cs

df d d (
- ~ ~ ~ ) 11 1.. T .. -i c 1 p 1 ) . \,2 ~.i) (5.3)

i I , noting the pdt for gj is

\) - 2 detcrini~l]''- e )\' I\- (5.4)

1()r alll x R .? ,50 that g j( p) corresponds to anv r-dlimensional Gjaussian distribution with

meo an p anrd cox arianrce mat rix 2. let the fi nite Gaussian mi xtutre



C ~ S(5 5)

x%%hicl_ canl represent at pdf., cdf., or probability distribution, depending on the context,

W ith all of the above established. at uniform approximation theorem can no\% be
stated.

The'orem 5. 1.

I et F: T' -[0. 1] be any gjx en xkelk-bcha% ed cdf with possibly \acuous .1 containing maws
poi:nts )u,, 0. In accordance wilth the ahox c notation.

Ihen, F "an be arhitarily unif-ormly closely approy mated ox er .1 except L~t all ol
F', mass point,, j, _:1J, b,, a sequence of edlts \khich are finite (iussian mi~t UreCS. Denote this,
relation as

Proo/f First, consider separately the truth ol' the theorem (or the purely finitel\ dis crete case,
F-[CI Clearlx in this case, tht: sequence

g g n ~2.

xhere

T, p ;~ (p PjL BIn ]t(

oh\ IOUSlV. Liniforml\' approaches [I J) as a cdf', except ox er

Next, consider the x ahlty of' the theorem for- the purely absolutel\ contIntUOUs caSe
F =FP2). N oxk. from ( 19), theorem I , there exis ts a sequence ol tmie (lausslaii mixtures,

&Y-d -I 4'r1 )1 .1 ( .)

x hich approaches, 0." n 1,1 -norm, But tsing the basic a hsoIL1 tinqualit\ relat in torr all \ C
ImeaSUrable).

g, 11)2 T1 j x)dx I i'1I\)dx I

XtA xfA

x 6-n 12 Ixr)4 t12l(x)l dx.

and letting A =A, d lv(-R and txsI or any sf R', it follo~4 s that as cdl's., g 2 approaches
F" 2 uniformrly oyer

1-nal, since F is ai linear combination of [PI' an( ~I 2It follovos that one can let in
eq. 15,6)
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z Ad g+ (IA).g

, hich is again a legitimate finite Gaussian mixture.

Remark 5.1

It should be noted that in the construction of g2 above, the 1', may approach zero,
a not necessarily desirable property due to the resulting fluctuatio "s of form of the pdf's.
However. in Goodman and Bovcr (1975) and in Medgyessy (1961) alternative forms can be
utilized. Of course, in the case otg this cannot be avoided.

The next theorem establishes a unique linear regression relation among any given pair
of random vectors, pro ided sufficient joint second moments cxist. Although this is a basic
result, appearing in many places in one form or another [see, eg.. Deutsch (1965) sections 3.3
and 3.4], it is surprisingly not often in the ful form to be given here with direct application to
reducing nonlinear relations to "exact" linear ones, without employing approximating
expansions.

Theorem 5.2

let (UlA.p) be a probability space and X:fQ-k and Y:(, m be random vectors

such that Coy (.Y.) exists and Cov(X) is positive definite.

[hen, there exists constant m by k (real) matrix B, called !he regression transition
matrix from Y to X. and random vector W:fl,'rm such that the linear regression relation
holds

Y zB- X + W , (5.12,

such that X and W are uncorrelated. W and B are uniquely determined with

W Z Y B.X , B Cov(Y,X)-Cov I(X) . (5.13)

Cov(W) ('ov(Y) Cov(Y,X)*Cov 1(X).Cov'(Y,X), (5.14)

and a const',nt Az F(W)= E(Y) B.X), etc. ,an be added to the RHS of (5.12), provided W is
replaced by the iero mean random vector NV E(W).

Proof: The result is self-evident, once equation (5. 13) is noted, using the calculus of multivar-
iate moments and matrices.

Remark <.2.

Note that theorem 5.2 can b: applied to produce an "exact" ineari/ation of nonlinear
relations such as given below "here X and V are uncorrelated random vectors with EV) = Or

so that

Y = fX) + V , (5.15)

where f:Rk -m is some fixed (measurable) function. The result immediately follows that
eq. (5.12) becomes here
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Y B.X + W,

but %khere

B Cov(f(X).X].Co J(X). (5.16)

Now, if one were to apply a standard linearization approach to the model in eq. (5.15),
by lineari/ing f(X),

f(X) A o + Bo.(X XI ) ,  (5.17)

kk here

A,, f(xo ) , B(d[df(X) dX]X=,,. (5.18)

for some constant x, E Rk such as E(X). Substituting eq. (5.17) into eq. (5.15) yields the
approximation

Y -A + Bo(.X xo) + V (5.19)

Next. if one defines the true error in eq. (5.19) as

ZdY Ao - Bo(X - x°)

= W+(B Bo).X+C, (5.20)

where

dCdBo.xo A O ,  (5.21)

then by the above equations and standard matrix manipulations of covariances and means

E(Z*Z ) = Cov(W) + (B Bo).Cov(X).(B -- Bo)y + DDI

> Cov(W)

SCov(V) + H

> Cov(V) (5.22)

where

D E(W) + (B Bo).E(X) + C (5.23)

HA Co\,f(X)] Cov[f(X),X].Cov I(X).CovT [f(X),X]. (5.24)

> indicates positive semidefinite partial ordering among all m by m matrices, where one has

\I M 2 iff M I M 2 is a positive semidefinite matrix.
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Thus, eq. (5.22) quantitatively shows that, although one pays a penalty (H) for using
the exactly linearized form in eqs. (5. 12), and (5. 16), in place of the original nonlinear additive
form in eq. (5.15), the form is still a more accurate approach than use of the standard lineari-
zation (without reiteration) in eq. (5.19).

Finally, note that the above remarks are valid for the exact linearization of the condi-
tional "signal" relation in eqs. (4.19) and (4.20).

Corollary 5. I.

Suppose (fLAp) is a probability space and X:fl.R k , Y:fl--'m are random vectors

such that (.Y.) has a well-behaved cdf over 7?mk and Coy (Y.) exists with Cov(X) positive
definite. 

X

Then:

(i) An exact linear regression relation holds as in eq. (5.12) between X and Y.

(ii) For conditional random vector (YIX). for all outcomes y of Y and x of X. for
som er,1, P " 1, 

gr7 1, l (y -B'x) - F(YyX = x). (5.25)

(iii) For unconditional random vector X at any possible outcome x. for some Z2,

g(x) F(X = x). (5.26)

(iv) For the marginal integrated-out cdf of Y, at any outcome y

g (y) F(_v) f F(Y =vX = x)dF(X =x), (5.27)

where letting

d d d
7 (r*i j)i .ji (mi', i  - i d (X )iEij (5.28)

1,2,

r = (7 1 1 1  7 2j,) ii , d (B. 2j, + MIJl) I jidi

i=1,2 K i=I,2
d r~l )

d/J, 2)

yd (B. 1 2 , .BT + :, E ) ., (5.29)

Proof Nte that all linea, transforms on preserve the well-behaved property. Then,

applying theorems 5.1 and 5.2 yields (i)-(iii). with (iv) obtained by multiplying out all mixture
terms and using the well-known convolution of Gaussian pdf's which here takes the form, for
any typical term
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g [y- Uil] - x J f gy -j(y - Bx - )g,j 2 )dx (5,30)
Xfjk Ij I g',2X J

Before establishing the main result, actually a corollary of the above two theorems, the
following additional notation will be useful:

As before, suppose Y and X are random vectors with Y:fI-??m and X:fj_ ?k, but
now where X is partitioned into

x K 2 xi:n i~l . , (5.31)

where necessarily kI  k, = k. Partition, similarly, any xcRk into

(5.32)

and let for any I , 1 _s,

X) d () (5.33)

so that one notes

X(I)= X . X (S) X . (5.34)

Also, extend the notation, where

X0 d , X'+ 1 0 .X od 0, (5.35)

etc., with similar remarks holding for x.

Corollari 5.2.

Suppose the hypotheses of corollary 5.1 hold, with the notation introduced in
equations (5.31) through (5.35) valid.

Then:

(i) For each i , i = 0,1 .s, the exact linear regression relation holds

X = Bi " X6+l) + Wi . (5.36)

where X(1* 1) and W i are uncorrelated random vectors and each Bi is a constant ki by
kj. I +*,+k 5 regression transition matrix, obtained analogous to B in (5.13). Denote the parti-
tioning of each Bi
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Bi = (Bii+j .Bij+2 ... Bi,) B(iJ+1) (5.37)

BB.~t) d (Bi t_ ...Bis) , t 
= I .. ,s - . (5.38)

(ii) In tur i, there exists finite Gaussian mixtures, where for all possible outcomes xi
of X i

gri. ilit [xi - Bixi+l)]  F[X i = xiX(+l) = x( + )] , (5.39)

where rj, p. 1i are all formally the same as the corresponding values in eq. (5.28), except
here, i = 0, 1.2. ..s, noting for i = s, RHS of eq. (5.36) is identical to X s z W s and, in effect,
Bs is 0.

(iii) Finally, the marginal, integrated-out cdf of Y, compatible with (i) and (ii), is
uniformly approximated as, for any outcome y of Y,

S

g,,, 1(y) F(y)= f F(Y=yIX x). IIF[X xi X6+) x(+')]dx , (5.40)
Xf k i=

where

ss

Sd B6i)°Y i',i ) jifJi .  0, JJ= Jo" Xs o " JS- (5.41)

i=0 i--0 ...

d

and where

B30)d I , BM d BO, I B(2) d B0 .2 + BO.I.B1,2

B3 d 1B0.3 + Bo.2 .B2 . + B0., 1 3B.3 + B0 .B1 .2.B2, 3 ,

and more generally.

Bd BOji *Bii 2 " Bt, B( 130') B, j. (5.42)
f= I(over all possible

paths 0Ki1<..<it<i,
t= 1,2,..
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Proof. (i) and (ii) follow from corollary 5. 1. For (iii), consider

F(y)- f II F[X i = xi[X(
i+ ) = X(i+  dx

xe Rk L~

5 g,.i [x - Bi-x(i+l0 dx
xeTjk i=0

00 ×..× 0@].(5.43)

where

s

hlx0;j~d f J gvj..[x -B • x0+0 - ij,] dx

xfRk i=0

hs(xo;j x s+)) , (5.44)

where recursively hi is defined as follows:

h0 [x 0 ;j :xt ) : gd 0 , [X0 _- B0 .x 1)- 0 ,j0] (5.45)

and fori= 1...s,

hi[x 0 ;j :0x(+0] d f -1 [hi j [ x(i)]'gi'Ji[Xi - Bi"x6 -iJ]" dxi (5.46)xielik i 1

Then, beginning with i = 1, one applies the identity in eq. (5.30) to obtain h1, followed
in turn by a similar procedure for i = 2, using eq. (5.46). until step i = s is reached.

Remark 5.3.

Note that the results in corollary 5.2 (iii) are equivalent to specifying a finite Gaussian
mixture, where for each mixing index j J0 x , .x Js, the corresponding component distribution
is Gaussian determining a random vector, say Uj, which has E(Uj) = , Cov(Uj) =:0),

values given in eq. (5.41). In turn, from the forms in eq. (5.41), each Uj is seen to be a collec-

tion of fixed linear combination of statistically independent Gaussian random vectors, say Uj,,
where symbolically

U1 : BW°)'U.,0 +."+ B(O).1' , (5.47)
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and each Uj j corresponds to [gvj( ,,, Each coefficient matrix Be') in the linear

combination via eq. (5.42) represents the overall regression transition matrix from Y multiplica-
tively up to Xi via all possible distinct path combinations of individual regression transition
matrices among pairs of random vectors from (Y,X I .. .,Xi) connecting Y to Xi. Possible
connections may exist also with lngber's mesoscopic-macroscopic approach to C3 modeling,
where the path-integral representation relative to nonlinear, nonequilibrium Gaussian-
Markovian statistical mechanics is used. This avenue remains to be explored. [Again, see
Ingber (1986).]

Remark 5.4.

In applying corollary 5.2, the philosophy of approach is as follows: One does not know
a priori the distribution of Y, the desired goal, but one does know - or has control in assign-
ing - all of the intermediate or auxiliary conditional distributions, conditioning Y on X, X I
on X(2), X, on X 3..... and finally X, [X(s' l ) being trivialized to make Xs an unconditional
random vector]. Further help in reducing calculations in eqs. (5.41) and (5.42) will occur if
sufficiency or Markovian-like assumptions can be made, thereby causing in effect a number of
individual transition matrices Bil,i 2 to be zero.

In particular, consider now applying corollary 5.2 to the evolution of node states as in
steps (i) and (ii), sections 3 and 4, where ALDP=PL:

Y = XodN ++ (WP I +, #WP2 +, #WP 3
+, #TROOP', EQMO +, INFO' ) , (5.48)

X s= 21 (5.49)

where, replacing directly N, and hence N' , as well as T', by their component subvariables, as
given in eqs. (3.3) and (3.4),

XId R , (5.50)

X, d DEC' X3 d CONS'. X4 d FUS' , X5 d HYP, X6 d ALG +, X7 d DET + " (5.51)

dd p+ d d MO + , X

Xd #TROOP+, X12 X 13 d INFO+ • (5.52)

X 4 d S (5.53)

d
X 15 d R (5.54)

d dd
XI 6 #WPI, XI 7 =#WP2, X8 _ #WP 3 ,

ddd

X19 d #TROOP.X 20 d EQMO. X2 1 d INFO. (5.55)
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In turn, due to the assumptions in table 2, a number of transition matrices can be set

equal to zero, as mentioned earlier:

B0j. , =2 .. 7 .14 .... 21

B1  , =3 . .. 7 14 .. _21

BilI, 1 =2 ... 7 i, =14 ... 21 , =0. (5.56)

B ,15  , =8 .. .. 13

B14.J , =16 .... 21

Thus, the key calculaticns in equations (4.12), (4.13), and (4.16) through (4.19) can all
be replaced, using eqs. (5.48) through (5.56) in corollary 5.2 (iii).

If one considers the number of operations required in eqs. (4.12), (4.13) and (4.16)
through (4.19) directly to compute p(N+ ), assuming equally sized domains of values, say q (as
noted at the end of section 4), one obtains here on the order of q21 , 21 being the number of
variables being integrated out in eq. (4. 1). On the other hand, the linear-Gaussian mixture
approximation of corollary 5.2 (iii) requires about card(J0 )2 1 mixing coefficients, when card(Ji)
= card (J0 ), for all i. in addition, for each mixture distribution corresponding to a mixing term,
there are 2 x 22 + 3 x 22 entire matrix multiplication and addition operations for obtaining
the characterizing Gaussian parameters: the mean and covariance matrix. There is also an
upper bound of 221 - reduced by used of eq. (5.56) - number of matrix additions of matrix
multiplication required to obtain B(° ),. . Bt 2 1), recursively, as in eq. (5.42). Hence, for the
linear-Gaussian approach, a multiplicative value of [2card(J 0 )]2 1 could be required for
implementation.

Thus, if the average number of mixing coefficients can be reduced so that

card(J 0 ) << q/2 , (5.57)

then the linear-Gaussian mixture approach can be of real use. This will occur especially when
the number of C 3 variables describable by single-Gaussian distributions or by some absolutely
continuous distributions which are bimodal or at least relatively minimum in number of
modes. This is opposite in kind to the situation where most C3 variables are discrete with the
only good Gaussian mixture approximations being essentially the same as the original discrete
distributions, but with each corresponding dirac delta function replaced by a Gaussian distribu-
tion of sufficiently small covariance matrix, as in the proof of theorem 5.1. In the latter case,
eq. (5.57) will be violated and the better approach is to stay with the original integrals, possibly

discretizing them.

One desirable property of Gaussian mixtures is the ease in computing means and
covariance matrices, once the mixing parameters are all determined. Thus, it follows easily that
for Y in corollary 5.2

E(Y) ON I 7q) . /A q (5.58)

jei0 x • .x J,
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Cov(Y) a (q). 1Q) + [Q.) - E(Y)].[mW - E(Y)]T ). (5.59)
Jc-ox x J ,

Finally, mention must be made of another possible source of difficulty in implementing
the linear-Gaussian mixture method. This involves the actual construction of the Gaussian
mixtures, mentioned previously. [Again, see Goodman and Boyer (1975) and Medgyessv (1961)
for techniques.]

6. CONCLUSIONS

To implement the proposed general C3 decision game, as outlined in the previous
sections. for a given simulated scenario, one must be careful in defining the boundaries for
what constitutes the relevant C 3 variables. This is a relative concept, In a -iven situation, a
node may represent simply a single person or machine, such as a tank crew, or it may represent
an entire group of tanks, depending on the desired aggregation or hierarchical level considered.
In addition, before implementing the model proposed here, one must scope out what consti-
tutes a "signal" input-output node cycle and over what time periods the "signals" occur.

Consider, for example, the following possible simplified inner-outer air battle:

(I) Enemy bombers (I) arrive in formation towards grouping of friendly ships of two
types (IVV).

(2) Friendly scout airplanes (1I) detect; surveil I and pass information to friendly
fighter airplanes (i1) as well as to IV,V,

(3) 11I meet I and attack, I being passive.

(4) Remaining I continue toward IV,V. with II now ceasing attacks.

(5) IV.V send missiles against remaining I, before themselves are bombed by I.

(6) Remaining I, following now above missile attack, bomb IVV.

(7) End of scenario as I turns away.

For an outline of approach, the aggregation level here is to make each individual
combatant a distinct node. Thus, there are five types of nodes here: enemy bombers (I).
friendly surveillance airplanes (11), friendly fighter planes (i1), friendly ships of types (IV) and
(V). Within each type, one can designate individual nodes by suitable indexing. In addition.
one must determine for each side, friendly or adversary, all of the relative primitive relations
such as given in eq. (4.21) in probability form. All of these will also depend on what constitute
node cycles. Based on this scenario, table 4 presents a tentative collection of epochs of node
interaction which can be identified as input-output node-processing cycles.

Future efforts will be dirccted toward further implementation of the C 3 decision game
relative to particular scenarios such as the inner-outer air battle.
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Table 4. Categorization of events occurring during inner-outer air battle.

Node
Type Input-output node cycles occur at phase changes which are by doctrine and game design

I: Enemy Initial BFA by III BFA by III BFA' by IlVBombers BFA bylIV BFA by IV BFA* by IV BOMB- V BOMB IV BOMB + IV EndBOMB IV BOMB V BOMB4 IVEn
BFA by IV BFA by V BFA + by V

II: Friend SINF III
Surv. Initial SPOT I SPOT I SPOT + I SINF IV End

SINF V

III: Friend Initial RINF RINF RINF* FIR at I FIR at I FIR + at I End
Fight from II from 1i from II

IV: Friend RINF RINF FIR FIR FIR* BBOM BBOM BBOM4  End
Ship Initial from II from 11 at 1 at I at I by I by I by I

V: Friend Initial RINF RINF FIR FIR FIR +  BBOM BBOM BBOM4  End
Ship from 11 froinI at I at I at I by I by I by I

Symbols: BFA = Being Fired At . SPOT 2 Spotting ,SINF - Sending Information

RINF = Receiving Information , FIR 2 firing , BBOM = Being Bombed,

BOM= Bombing ,( ) =Just Before () =Just After

EACH ROW LISTS EVENTS IN SEQUENCE OF OCCURRENCE. COLUMNS ARE NOT RFLATED TO
SUCH OCCURRENCES.
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